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Abstract: We study giant magnons in the the D1-D5 system from both the boundary CFT

and as classical solutions of the string sigma model in AdS3×S3×T 4. Re-examining earlier

studies of the symmetric product conformal field theory we argue that giant magnons in the

symmetric product are BPS states in a centrally extended SU(1|1)× SU(1|1) superalgebra

with two more additional central charges. The magnons carry these additional central

charges locally but globally they vanish. Using a spin chain description of these magnons

and the extended superalgebra we show that these magnons obey a dispersion relation

which is periodic in momentum. We then identify these states on the string theory side

and show that here too they are BPS in the same centrally extended algebra and obey the

same dispersion relation which is periodic in momentum. This dispersion relation arises as

the BPS condition for the extended algebra and is similar to that of magnons in N = 4

Yang-Mills
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1. Introduction

The duality between N = 4 Yang-Mills and string theory on AdS5 × S5 is by far the most

well studied example of the Maldacena correspondence [1, 2]. Another well studied and

interesting example of the correspondence is the case of the duality between type IIB string

theory on AdS3 × S3 × T 4 and the N = (4, 4) superconformal field theory on a resolution

of the symmetric product [1, 3, 4]

M = TN/S(N). (1.1)

AdS3 × S3 × T 4 arises as a near horizon limit of the system of Q1 D1-branes and Q5

D5-branes wrapped on T 4, then N in (1.1) is given by Q1Q5. The duality sates that the

spectrum of operators in the N = (4, 4) superconformal field theory on M should be the

same as the spectrum of type IIB string states in AdS3 × S3 × T 4. Operators which have

large charges in the CFT should be dual to classical string configurations [5].

In this paper we consider operators with large J charges, here J = J3 + J̃3 the sum

of the left and right SU(2) R-charges of the N = (4, 4) conformal field theory. We study

states with finite ∆ − J , where ∆ = L0 + L̃0 the left and right conformal weights of the

operators. Operators with ∆ − J = 0 are chiral primaries which are the ground states of
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the ZJ twisted sector with J3 charges (J−1
2 , J−1

2 ). We can then consider finite number of

excitations of the following form on the chiral primary

J−
p1
J−

p1
· · · J−

pj
|0〉 ⊗ |0〉, (1.2)

the vacuum in (1.2) denotes the ZJ twisted sector. J−
p are operators which lower the left J3

quantum number and carry momentum p in the ZJ twisted sector, under the action of an

element of ZJ , J−
p |0〉 picks up a phase proportional to integer multiples of p. We can there-

fore think of the insertions of J−
p as magnons or impurities that move with momentum p

States of the form given in (1.2) were studied earlier in the limit of small momentum

p and in first order in the Z2 blow up mode [6 – 8]. The dispersion relation of a single

magnon was shown to be

∆ − J = 1 +
1

2π2
λ2(Q1Q5)

p2

4
, (1.3)

where λ is the coupling of the relevant Z2 blow up mode in the symmetric product. In this

paper we are interested in studying the magnons in the “giant magnon” limit given by

J → ∞, λ̃ = λ2(Q1Q5) = fixed, (1.4)

p = fixed, ∆ − J = fixed.

This differs from the plane wave limit [9] where λ̃ is infinite and it is n = pJ which is kept

fixed.

Examining earlier studies of the magnons within perturbation theory in λ and the plane

wave limit we argue that the magnons are BPS states in a centrally extended SU(1|1) ×
SU(1|1) superalgebra, the extended algebra has 2 more additional central charges. The

centrally extended algebra can be written as a N = 2 Poincaré superalgebra in 3-dimensions

with a single central charge. The remaining central charges play the role of the 3-momentum

in the Poincaré superalgebra. We then construct a dynamic spin chain representation of

the extended algebra which carries these additional central charges and derive the following

dispersion relation for a single magnon with momentum p

∆ − J =

√

1 + f(λ̃) sin2 p

2
. (1.5)

where f(λ̃) is an undetermined function of the coupling λ̃. On rewriting the extended

SU(1|1) × SU(1|1) as a 2 + 1 Poincaré superalgebra the above dispersion relation can be

viewed as the relativistic dispersion relation of a massive BPS particle in the 2+1 Poincaré

superalgebra. The spin chain representation constructed is such that these additional cen-

tral charges vanish on physical states when we impose the momentum constraint, the alge-

bra then collapses to the usual algebra. From the perturbative result in (1.3) we see that

f(λ̃) =
λ2Q1Q5

π2
, for λ̃≪ 1. (1.6)

Equation (1.5) is a BPS relation and the magnons in question have large J charge,

therefore we should expect to the find them as classical solutions to the string sigma model
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on AdS3 × S3 × T 4. These solutions are identical to the giant-magnon solutions found

by [10] in AdS5×S5. Since these solutions only require the subspace R×S2, they continue

to be solutions1 in AdS3 × S3 × T 4 with Ramond-Ramond flux through the S3. After

the identification of the momentum of the magnons to the geometrical angle [10] in the

classical solution we obtain the following dispersion relation for the magnon

∆ − J =
R2

πα′

∣

∣

∣sin
p

2

∣

∣

∣ , (1.7)

where R2 is the radius of S3 given by R2/α′ = g6
√
Q1Q1 and g6 is the 6d string coupling.

Following the logic of [10] we write the giant-magnon solution in Lin-Lunin-Maldacena

(LLM) [12] like coordinates for AdS3 × S3 [13] and construct the Killing spinors of the ge-

ometry. From the solution of the Killing spinors and the stretched string like nature of the

giant magnon in the LLM geometry we infer that the solution carries the required additional

central charges to render it BPS in the extended SU(1|1)×SU(1|1) algebra. The BPS con-

dition then implies the following dispersion relation at strong coupling for a single magnon

∆ − J =

√

1 + g2
6

Q1Q5

π2
sin2 p

2
. (1.8)

Comparison with (1.5) we see that the

f(λ̃) =
g2
6Q1Q5

π2
, for λ̃≫ 1 (1.9)

Thus identifying the coupling constant λ = g6 and examining the weak coupling result

in (1.6), perhaps we can guess that

f(λ̃) =
g2
6Q1Q5

π2
, (1.10)

at all values of the coupling λ̃. Note that the dispersion relation in (1.5) also agrees with

the plane wave limit when the equality in (1.10) is satisfied [6 – 9] The dispersion relation

is similar to that of giant magnons in N = 4 Yang-Mills with R2 in the dispersion relation

replaced by the radius of S5 instead of S3.

The organization of the paper is as follows: In the next section we review the results

of the analysis of magnons at small p and small λ in the symmetric product pointing out

the evidence for the extended SU(1|1) × SU(1|1) algebra. In section 3. we write down

the extended SU(1|1) × SU(1|1) algebra and show that it can be written as a N = 2

Poincaré algebra, we then construct a dynamic spin chain representation of magnons using

this algebra which obeys the dispersion relation (1.5) and show that it is a BPS relation

of the extended algebra. In section 4. we examine the magnons at strong coupling using

LLM coordinates for AdS3 × S3. We show that the magnons carry the required central

charges to be BPS in the extended SU(1|1) × SU(1|1) algebra. appendix A, B fill in the

details necessary to show that the giant magnon solution is supersymmetric. The method

developed in appendix A enables one to determine the supersymmetries of of a solution of

IIB gravity with S1 × S1 × T 4 isometry by embedding it as a solution of (1, 0) 6d gravity.

1Recently giant magnons in AdS3 × S3 and related solutions were studied in [11].
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2. Magnons in the symmetric product

In this section we present a short review of the symmetric product conformal field theory.

We then specify the magnon excitations in the symmetric product whose conformal dimen-

sions will be the subject of our interest and review the results of perturbation theory in λ.

The boundary theory corresponding to the system of Q1 number of D1-branes and Q5

number of D5-branes in type IIB on T 4 is given by the N = (4, 4) super conformal field

theory on a resolution of symmetric product orbifold

M = (T 4)Q1Q5/S(Q1Q5). (2.1)

The global part of the N = (4, 4) algebra is given by the supergroup SU(1, 1|2)×SU(1, 1|2).
The two copies arise from the left movers and the right movers of the conformal field theory

on M. The bosonic part of the the supergroup SU(1, 1|2) consists of the global part of

the conformal algebra SL(2, R) whose generators are L0, L± and the global part of the

R-symmetry SU(2) whose generators are J3, J±. The 8 supercharges for SU(1, 1|2) are

labeled by Gab
1/2, G

ab
−1/2, where a ∈ {+,−} denotes the quantum numbers of the charges

under SU(2)R and b ∈ {+,−} denotes the quantum numbers of the charges under SU(2)I
which is an outer automorphism of the N = (4, 4) algebra. The subscript ±1/2 refer to

the weights of the charges with respect to L0. For our discussion the anti-commutation

relations of relevance are
{

G++
−1/2, G

−−
1/2

}

= 2(L0 − J3),
{

G−+
1/2 , G

+−
−1/2

}

= 2(L0 − J3). (2.2)

From the above anti-commutation relations it is easy to see that the set of generators
{

G++
−1/2, G

−−
1/2 , L0, J

3
}

or the set
{

G−+
1/2 , G

+−
−1/2, L0, J

3
}

each form a SU(1|1) sub-algebra

with central charge L0 − J3. Similarly there is an identical copy of the SU(1, 1|2)
algebra from the right movers. We refer to these generators with a ˜ superscript:
{

L̃0, L̃±, J̃
3, J̃±, G̃

ab
1/2, G̃

ab
−1/2

}

. To be specific, and it will be justified by the subsequent

discussion we will focus on the SU(1|1) × SU(1|1) subalgebra generated by the following

{

G+−
−1/2, G

−+
1/2 , (L0 − J3)

}

,
{

G̃++
−1/2, G̃

−−
1/2 , (L̃0 − J̃3)

}

. (2.3)

The terms in the brackets (L0−J3) and (L̃0− J̃3) form the central charges of the SU(1|1)×
SU(1|1) algebra.

Chiral primaries in the symmetric product CFT satisfy the conditions Gab
1/2|ψ〉 =

G̃ab
1/2|ψ〉 = G+b

−1/2|ψ〉 = G̃+b
−1/2|ψ〉 = 0. They satisfy L0 = J3 and L̃0 = J̃3 We will focus

on chiral primaries which are the ground states in the ZJ twisted sector with the left and

the right J3 charge given by (J−1
2 , J−1

2 ), we denote this chiral primary by |0〉n ⊗ |0〉n. The

construction of this chiral primary ground state using twist operators is given in [14, 15].2

We now consider the following excitations above this chiral primary

|φp1
φp2

· · ·φpj
〉J ⊗ |0〉J = J−

p1
J−

p2
· · · J−

pj
|0〉J ⊗ |0〉J . (2.4)

2For a detailed review please see [16])
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where J−
p is given by

J−
p =

J
∑

k=1

eipkJ−
(k). (2.5)

and J−
(k) is the lowering operator of the left moving SU(2) R-current of the k-th copy of

the torus involved in the ZJ twisted sector. To satisfy orbifold group invariance condition

we need to impose the condition
∑

i

pi = 0. (2.6)

At the free orbifold point such a state is non-chiral in the left moving sector while it is still

chiral in the right-moving sector. We now perturb the symmetric product CFT with the

marginal operator constructed from the Z2 twist field and which is a singlet component of

SU(2)I . This operator is dual to a combination of Ramond-Ramond 0-form and a 4-form

on the dual gravity type IIB background. This perturbation is given by [16]

λ
(

G++
−1/2

G̃+−
−1/2

−G+−
−1/2

G̃++
−1/2

)

Σ(1/2,1/2) + c.c, (2.7)

where λ is the coupling constant, and Σ(1/2,1/2) refers to the Z2 twist operator of charge

(1/2, 1/2). Finally c.c refers to the expression involving the antichiral field Σ̄(1/2,1/2). On

perturbing the CFT with this operator the excited states given in (2.4) are no longer

right-chiral [8]3 it picks up anomalous dimensions.

We now recall the results of the evaluation of the anomalous dimensions of the class

of operators given in (2.4) to first order in λ in the limit J → ∞ and pi ≪ 1 together with

the number of excitations being small [8]. Consider the state4

|φp〉J ⊗ |0〉J = J−
p |0〉J ⊗ |0〉J . (2.8)

1. To first order in λ the action of G̃−a
+1/2 flips the state |φp〉J ⊗|0〉J from the ZJ twisted

sector to the ZJ−1 twisted sector. We write this as

G̃−a
1/2|φp〉J ⊗ |0〉J ∝ ǫabλG+b

−1/2|φp〉J−1 ⊗ |0〉J−1. (2.9)

The above transition clearly conserves the left and right J3, J̃3 charge. [8] evaluated

the following overlap in the limit J → ∞, p ≪ 1 to first order in λ

J−1〈0| ⊗ J−1〈φp|G−a
1/2G̃

−b
1/2|φp〉J ⊗ |0〉J = ǫabλp

√
Q1Q5

4π
. (2.10)

Note that from the equation in (2.9) we see that the state |ψp〉J ⊗ |0〉J which was

chiral on the right movers is no longer chiral.

3We follow the reference [8], related work has been done in [6, 7, 17]. The analysis of these build upon

the detailed evaluation of the 3-point functions of correlation functions of twist operators for symmetric

products which were performed in [18 – 20].
4In [8] the momentum of the state in (2.8) is referred to by the label n, with 2πn/J = p.
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2. In [8] it was shown that to first order in λ the following commutation relation is

obeyed on the state.

{

G̃−a
1/2, G

−b
1/2

}

|φp〉J ⊗ |0〉J = ǫabλ

∫

dz∂z(zz̄Σ̄
(1/2,1/2)|φp〉J ⊗ |0〉J . (2.11)

Note that the operator Σ(1/2,1/2) corresponds to the chiral primary with charge

(1/2, 1/2), therefore
∫

dz∂z(zz̄Σ̄
(1/2,1/2)) in (2.11) commutes with the following set

of generators
{

G̃−a
1/2, G̃

+a
−1/2, G

−a
1/2, G

+a
−1/2

}

.

Thus with respect to the SU(1|1) × SU(1|1) subalgebra given in (2.3) the operator
∫

dz∂z(zz̄Σ̄
(1/2,1/2)) is central. Furthermore the action of the operator evaluated at

the leading order in λ and for p≪ 1 is given by [8]
∫

dz∂z(zz̄Σ̄
(1/2,1/2))|φp〉J ⊗ |0〉J ∼ p|φp〉J−1 ⊗ |0〉J−1. (2.12)

Thus on physical states which satisfy (2.6) the action of the central element vanishes.

The commutation relation given in (2.11) can also be seen in the plane wave limit [8].

In the plane wave limit of AdS3 × S3 it can be seen that [8] the charges obey the

following commutation relations

{

G−a
1/2, G̃

−b
1/2

}

= ǫab 1

p+

∑

p

pNp, (2.13)

{

G+a
−1/2, G̃

+b
−1/2

}

= ǫab 1

p+

∑

p

pNp.

where Np is the oscillator number operator at momentum p on the pp wave and p+

is the light cone momentum. From these commutation relations also it is seen that

on physical states, which satisfy the condition
∑

p pNp = 0, the anti-commutation

relations vanish.

3. To the leading order in λ the correction to ∆−J where ∆ = L0 + L̃0 and J = J3 + J̃3

is given by [8]

∆ − J = 1 +
1

2π2
λ2(Q1Q5)

(

p2

4

)

. (2.14)

4. Note the that marginal deformation of the conformal field theory given in (2.7)

is such that L0 = L̄0. Furthermore the excited state given in (2.8) is such that

L0 = L̄0, therefore in perturbation theory it is clear that the change in conformal

weights of states is such that δL0 = δL̄0

In principle there could be the following transition from the ZJ twisted sector to the

ZJ+1 sector

G̃+a
−1/2|φp〉J ⊗ |0〉J → ǫabG−b

1/2|φp〉J+1 ⊗ |0〉J+1. (2.15)

Note that the J3, J̃3 charges are conserved under such transitions, but to first order in λ

such transitions are not present [8],

– 6 –
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3. The SU(1|1) × SU(1|1) dynamic spin chain model

As we have seen in the previous section that it is possible to obtain the conformal dimensions

of the magnon excitations within perturbation theory it is sufficient to restrict our attention

to the action of the supercharges
{

G+−
−1/2, G

−+
1/2 , G̃

+−
−1/2G̃

−+
1/2

}

or the set of supercharges
{

G++
−1/2, G

−−
1/2 , G̃

++
−1/2G̃

−−
1/2

}

. From the commutation relations in (2.2) it can be seen that

the above charges generate the subgroup SU(1|1) × SU(1|1) with central charges L0 − J3

and L̃0 − J̃3. To simplify the discussion we choose one of the SU(1|1) × SU(1|1) algebra

and define the generators as follows

G+−
−1/2 → Q1, G̃+−

−1/2 → Q2, (3.1)

G−+
1/2 → S1, G̃−+

1/2 → S2,

L0 − J3 → C1, L̃0 − J̃3 → C2.

In terms of these variables, the SU(1|1) × SU(1|1) algebra is given by

{Q1, S1} = C1, {Q2, S2} = C2 (3.2)

{Q1, Q2} = 0, {S1, S2} = 0,

{Q1, S2} = 0, {S1, Q2} = 0.

C1 and C2 are central elements of the algebra.

The magnon excitations given in (2.4) with momentum pi = 0 belong to the BPS

states of this algebra with C1 = j, C2 = 0. We now consider magnons with momentum

pi 6= 0, these states are not BPS in the above algebra as C1, C2 6= 0. But, on turning on

interactions due to the marginal operator in (2.7) we propose that the above algebra gets

central extended with 2 more additional central charges. The magnons are then BPS states

within this extended algebra and carry these central charges. These central charges are

such that on physical states they vanish. We then derive the dispersion relation relating

the conformal dimensions of the magnons to the momentum pi.

3.1 The extended SU(1|1) × SU(1|1) algebra

From the anti-commutation relation (2.11) derived at first order in perturbation theory

and the anti-commutation relations (2.13) obtained in the plane wave limit we see that

the we should extend the SU(1|1)× SU(1|1) subalgebra such that {Q1, Q2} and {S1, S2} is

non-trivial. Therefore we consider the following central extension of the SU(1|1)× SU(1|1)
algebra, given by the commutation relations

{Q1, S1} = C1, {Q2, S2} = C2, (3.3)

{Q1, Q2} = C3 − iC4, {S1, S2} = C3 + iC4,

{Q1, S2} = 0, {S1, Q2} = 0.

Note that we have extended the algebra by including 2 more central charges C3, C2, further

more since

Q†
a = Sa, (3.4)

– 7 –
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we have {Q1, Q2}† = {S1, S2} the central charges in these two cases are related by a Her-

mitian conjugation. Note that the above central extension of SU(1|1)×SU(1|1) is different

from that considered in [21] which arises in certain sub-sectors of N = 4 Yang-Mills.5

This central extension of the SU(1|1) × SU(1|1) in (3.3) can be viewed as a N = 2

Poincaré superalgebra in 3-dimensions with one central charge. The remaining central

charges play the role of 3-momentum in the Poincaré superalgebra. This is similar to the

case of giant magnons of N = 4 Yang-Mills, there the magnons are BPS states of the central

extended SU(2|2) superalgebra which can also be written as a Poincaré superalgebra in 3-

dimensions [10]. To view the centrally extended algebra in (3.3) as a N = 2 Poincaré

algebra we first define the following two component Majorana spinors in 3-dimension

q1 =

[

Q1 + S1

i(Q2 − S2)

]

, q2 =

[

i(Q1 − S1)

(Q2 + S2)

]

. (3.5)

It is easy to see that from the property (3.4) that these charges are real. We now can write

the commutation relations for the extended algebra in (3.3) as

{

qi
α, q

j
β

}

= 2δij p̂µ(γ̃µ)αβ + 2ǫijǫαβC3. (3.6)

Our conventions for the 3-dimensional γ-matrices are as follows:

γ0 = iσ2, γ1 = σ1, γ2 = σ3. (3.7)

where σi are Pauli matrices. We also define

γ̃µ
αβ = (γµ)γαǫγβ , γ̃0 = −δαβ , γ̃1 = −σ3, γ̃2 = σ1. (3.8)

From (3.3) and the definition of γ̃µ and the relation (3.6) we see that the momenta p̂µ are

identified with the central charges as follows

−p̂0 − p̂1 = C1, −p̂0 + p̂1 = C2, p̂2 = C4. (3.9)

The algebra given in (3.6) is the super Poincare algebra in 3d with the central charge

C3.The remaining central charges of the extended SU(1|1)× SU(1|1) algebra are identified

with the momenta in 3d which commute with the supercharges. From the r.h.s. of (3.6)

we see that BPS states exist when

p̂2
0 = p̂2

1 + p̂2
2 + C2

3 , or
1

4
(C1 +C2)

2 =
1

4
(C1 − C2)

2 +C2
3 +C2

4 . (3.10)

3.2 Dynamic spin chain representation

We have seen that the magnon excitations given in (2.4) with pi = 0 are states with

C1 = j and C2 = 0, one can also see that they satisfy the BPS condition (3.10). In this

section following [22] we write down a representation of the extended SU(1|1) × SU(1|1)
algebra in terms of a dynamic spin chain which carries the central charges C3, C4. We

5In the extension considered by [21], the anti-commutators {Q1, S2} and {S1, Q2} were non-trivial.
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propose that these states correspond to magnons with pi 6= 0. The charges are turned on

in such a way that on physical states they vanish. We thus satisfy the property (2.11)

and (2.13) seen both in perturbation theory at first order as well as in the plane wave

limit. Using this representation of magnons we derive a dispersion relation of the energy

C1 + C2 = ∆ − J = (L0 + L̃0) − (J3 + J̃3) of these magnons. This dispersion relation

satisfies the BPS condition (3.10) and thus is valid at all orders in interaction. In the next

section we identify the magnons at strong coupling and show that they indeed satisfy the

same dispersion relation.

The vacuum state of the spin chain is a chrial primary denoted as

|0〉J ⊗ |0〉J = | . . . ψψ . . .〉 ⊗ | . . . ψ̃ψ̃ . . .〉. (3.11)

This state represents the chiral primary or weight (J−1
2 , J−1

2 ) in the ZJ twisted sector of

the symmetric product. We work in the limit J → ∞. It is convenient to think of each |ψ〉
as state which carries weight L0 = 1/2 and J3 = 1/2. In the language of the twist field it

is a Z2 twist field which implements the permutation between two copies of the torus T 4.

Thus in the vacuum state in (3.11), there are J − 1 |ψ〉’s each carrying L0 = 1/2, J3 = 1/2

at the J − 1 sites for the right moving vacuum and similarly there are J − 1 |ψ̃〉 which

carries weight L̃0 = 1/2, J̃3 = 1/2 at J − 1 sites for the left moving vacuum. All charges

Q1, Q2, S1, S2 annihilate the vacuum (3.11) since it is a chiral primary. From now on we

will work in the limit of the infinite J → ∞ chain. We consider the following excitations

on this vacuum

|φp1
. . . φpj

〉⊗|0〉=
∑

n1,≪...≪nj

eip1n1 . . . eipjnj | · · ·ψψ · · ·φ1 · · ·φ2 · · ·φj · · ·ψψ · · · 〉⊗|0〉. (3.12)

Note that we have removed the subscript J from the kets since we are working in the strict

J → ∞ limit. Here the state |φ〉 represents a state with L0 = 1/2, J3 = −1/2 with It is

obtained from the state |ψ〉 by the

|φ〉 = J−|ψ〉. (3.13)

Thus excitations given in (3.12) can be obtained following action of J−
p on the vacuum

J−
p1
J−

p2
· · · J−

pj
|0〉 ⊗ |0〉, (3.14)

where

J−
p =

∑

l

eiplJ−
(l). (3.15)

J−
(l) acts on the state |ψ〉 at site l. Thus the state in (3.12) corresponds to the state defined

in (2.4). The central charges at zeroth order in the coupling of the theory of this state is

given by C1 = j, C2 = 0.

To define the action of the charges Qa, Sa on the general excited state (3.12) we first

define their action on the simple state with one ψ excited to φ on the extreme left. Let

|φ〉 ⊗ |0〉 = |φψψ · · · 〉 ⊗ |ψ̃ψ̃ · · · 〉, (3.16)
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then the action of the charges on this state is given by

Q1|φ〉 ⊗ |0〉 = a|ψ+φ〉 ⊗ |0〉, (3.17)

Q2|φ〉 ⊗ |0〉 = a′|φ〉 ⊗ |ψ̃+〉,
S1|φ〉 ⊗ |0〉 = b|ψ−φ〉 ⊗ |0〉,
S2|φ〉 ⊗ |0〉 = b′|φ〉 ⊗ |ψ̃−〉.

In the above equations the presence of ψ+ refers to the fact that that state is in the

ZJ+1 × ZJ twisted sector, while the presence of ψ− refers to the fact that the state is in

the ZJ−1 ×ZJ twisted sector. Similarly the presence of ψ̃+ refers to the fact that that the

state is in the ZJ ⊗ZJ+1 twisted sector, and the presence of ψ̃− refers to the fact that the

state is in the ZJ ⊗ ZJ−1 sector. a, a′, b, b′ are constants which depend on the interaction

strength of the theory and should vanish at the zeroth order in coupling. These transition

rules are motivated from the observations given in (2.9) and (2.10) seen in the symmetric

product conformal field theory at first order in λ. In the extended algebra (3.3) we have

Q2
1 = 0, S2

1 = 0, Q2
2 = 0, S2

2 = 0. We write this as

Q1|ψ+φ〉 ⊗ |0〉 = 0, (3.18)

Q2|φ〉 ⊗ |ψ̃+〉 = 0,

S1|ψ−φ〉 ⊗ |0〉 = 0,

S2|φ〉 ⊗ |ψ−〉 = 0.

From the above rules it is clear that the the difference of the twists in the between the

left and the right moving sectors can be at the most ±1. To impose the anti-commutation

relations {Q1, S2} = 0, {Q2, S2} = 0 on the states of spin chain we assume the following

states in the spin chain are proportional.

Q1|Ψ〉 = gS2|Ψ〉, Q2|Ψ〉 = g′S1|Ψ〉. (3.19)

where |Ψ〉 is any state obtained by the action of charges on the state |φ〉 ⊗ |0〉. The

above equation is motivated by the observation (2.9) seen in perturbation theory. It is

clear that using the above equation and the fact Q2
1 = 0, S2

1 = 0, Q2
2 = 0, S2

2 = 0 the anti-

commutation relations {Q1, S2} = 0, {Q2, S2} = 0 on the excited states are seen to hold.

Now the only other non-trivial sequences of action of charges to specify the representation

are Q1Q2, Q2Q1, S1S2, S2S1, Q1S1, S1Q1, Q2S2, S2Q2. We write these

Q1Q2|φ〉 ⊗ |0〉 = aa′|ψ+〉 ⊗ |ψ̃+〉, (3.20)

Q2Q1|φ〉 ⊗ |0〉 = aa′γ|ψ+〉 ⊗ |ψ̃+〉,
S1S2|φ〉 ⊗ |0〉 = bb′|ψ−φ〉 ⊗ |ψ̃−〉,
S2S1|φ〉 ⊗ |0〉 = bb′γ′|ψ−φ〉 ⊗ |ψ̃−〉,
S1Q1|φ〉 ⊗ |0〉 = ab|φ〉 ⊗ |0〉,
Q1S1|φ〉 ⊗ |0〉 = abγ̃|φ〉 ⊗ |0〉,
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S2Q2|φ〉 ⊗ |0〉 = a′b′|φ〉 ⊗ |0〉,
Q2S2|φ〉 ⊗ |0〉 = a′b′γ̃′|φ〉 ⊗ |0〉.

Note that the action of the Q1Q2 does not anti-commute with the action of Q2Q1 for

γ 6= −1 this is precisely what we require if the central charges C3, C4 need to be turned

on. A similar statement holds for the action of S1S2 and S2S1. Thus interchanging Q1Q2

picks up a factor of γ and interchanging S1S2 picks up a factor of γ′. Similarly note that

Q1S1 and Q2S2 also do not anti-commute.

Now using the defintion of the spin chain representation given in (3.17), (3.18)

and (3.20) we read out the central charges carried by the representation. Examining the

relations {Q1, S1} and {Q2, S2} on the excited state in (3.16) give

C1|φ〉 ⊗ |0〉 = ab(1 + γ̃)|φ〉 ⊗ |0〉, (3.21)

C2|φ〉 ⊗ |0〉 = a′b′(1 + γ̃′)|φ〉 ⊗ |0〉.

Finally from the relations {Q1, Q2} and {S1, S2} we have

(C3 − iC4)|φ〉 ⊗ |0〉 = (1 + γ)aa′|ψ+φ〉 ⊗ |ψ̃+〉, (3.22)

(C3 + iC4)|φ〉 ⊗ |0〉 = (1 + γ′)bb′|ψ−φ〉 ⊗ |ψ̃−〉.

In deriving this we used the rules given in (3.20) Note that from the action of the charges

given in (3.17), (3.19), (3.18) and (3.20) it can be shown that the charges C3, C4 are central.

Therefore the rules (3.17) , (3.19), (3.18) and (3.20) define a representation of the extended

SU(1|1) × SU(1|1) algebra.

We are interested in representation such that the central charges C3, C4 are turned on

locally in a state but globally on physical states these central charges vanish. For this we

consider an excitation of definite momentum p given by

|φp〉 ⊗ |0〉 =
∑

k

eipk| . . . ψψ . . . φ . . . ψψ . . .〉 ⊗ |0〉. (3.23)

Insertion or removal of ψ to the immediate left of the excitation we obtain

|ψ±φp〉 ⊗ |0〉 =
∑

k

eipk| . . . ψ±φ . . .〉 ⊗ |0〉, (3.24)

=
∑

k

eipk∓ip| . . . ψψ . . . φ . . .〉 ⊗ |0〉.

Thus upto a phase we can shift the insertion or removal of ψ to the very end. We therefore

have the relation

|ψ±φp〉 ⊗ |0〉 = e∓ip|φψ±〉 ⊗ |0〉. (3.25)

Thus the action of the central charge C3−iC4 on the tensor product of excitations is given by

(C3 − iC4)|φp1
. . . φpj

〉 ⊗ |0〉 = C|φp1
. . . φpj

ψ+〉 ⊗ |ψ+〉, (3.26)

C =

j
∑

k=1

aka
′
k(1 + γ)

j
∏

l=k+1

e−ipl .
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Therefore C should vanish on physical states, this is obtained by setting

aka
′
k(1 + γ) = α

(

e−ipk − 1
)

, (3.27)

where α is a function of the coupling λ̃, the normalization of α above is for convenience.

With this condition it is easy to see that C is given by

C = α

j
∑

k=1

(e−ipk − 1)

j
∏

l=k+1

e−ipl = α

(

j
∏

k=1

e−ipk − 1

)

. (3.28)

Thus on physical state C vanishes. Similarly we see that we should set

bkb
′
k(1 + γ′) = α∗

(

eipk − 1
)

, (3.29)

which ensures C3 + iC4 also vanishes on physical state. Note that the central charge

C3 + iC4 is the complex conjugate of C3− iC4 which has been implemented in (3.27) (3.29).

For the state |φp〉 ⊗ |0〉 we have C1 − C2 = 1, since

C1 − C2 = (L0 − J3) − (L̃− J̃3) = J̃3 − J3. (3.30)

Here the last equality follows due to property 4. seen in perturbation theory, that is the

condition L0 = L̃0 is maintained in perturbation theory. from (3.21) we have

(1 + γ̃)ab− (1 + γ̃′)a′b′ = 1. (3.31)

Then from the equations (3.27), (3.29) and (3.31) we obtain

∆ − J = C1 + C2 =
(

(1 + γ̃)ab+ (1 + γ̃′)a′b′
)

(3.32)

=

√

1 + 16α∗α
(1 + γ̃)(1 + γ̃′)

(1 + γ)(1 + γ′)
sin2

(p

2

)

,

=

√

1 + f(λ̃) sin2
(p

2

)

.

We thus have obtained the dispersion relations for the magnons. Note that the above

relation satisfies the BPS condition given in (3.10). From the comparison of the correction

to ∆ − J computed at weak coupling and small mometum given in (2.14) we see that

f(λ̃) = λ2Q1Q5

π2
. (3.33)

For the tensor product exicitation given in (3.12) with the assumption that the exciations

are well separated we obtain the dispersion relation

∆ − J =

j
∑

i=1

√

1 + f(λ̃) sin2
(pi

2

)

. (3.34)
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4. Magnons at strong coupling

The classical solutions of the string sigma model found by [10] for the case of AdS5 × S5

continue to be solutions in AdS3 ×S3 ×T 4. This is because they require only the subspace

R × S2 which is also available in AdS3 × S3. It is only when there is Ramond-Ramond

flux through the S3 the equations of motion discussed by [10] continue to be the same

for the case of AdS3 × S3. Thus the discussion in this section applies for pure Ramond-

Ramond flux through the S3. We first start with a short review of the magnon solution

and obtain the dispersion relation of the magnons at strong coupling. We then provide a

detailed analysis of the supersymmetry preserved by these magnons by following the logic

outlined in [10]. This involves writing the solution in LLM like coordinates for the case of

AdS3 ×S3 in which the magnon solution is just a stretched string. By studying the Killing

spinors and a particular one-form which corresponds to the gauge transformation of the NS

B-form under the action of two supersymmetries we see that the magnon solution carries

the required central charges to be BPS. The reason it is BPS is the same as the reason a

stretched string is BPS in flat space, in fact the supersymmetry algebra turns out to be

the the extended SU(1|1) × SU(1|1) algebra discussed in in section 2.

4.1 Magnon dispersion relation at strong coupling

The near horizon geometry of the D1-D5 system for large λ̃ is AdS3 × S3 × T 4 described

by the following metric [3]:

ds2 = R2(− cosh2 ρdt2 + dρ2 + sinh2 ρdϕ2 + dΩ2
3) + ds2([T 4]), (4.1)

where dΩ2
3 is the metric on the unit three sphere given by

dΩ2
3 = dθ2 + sin2 θdφ2 + cos2 θdψ2, (4.2)

with 0 ≤ θ ≤ π, 0 ≤ φ ≤ 2π, 0 ≤ ψ ≤ 2π, and ds2([T 4] is the flat metric on the four torus

given by

ds2[T 4] = α′

√

Q1

vQ5

(

dx2
6 + dx2

7 + dx2
8 + dx2

9

)

. (4.3)

v is the volume of asymptotic volume of the four torus in string units, and

R2 = α′g6
√

Q1Q5, (4.4)

with g6 = gs/
√
v. Note that we have used global coordinates to describe AdS3. We identify

φ to be the coordinate conjugate to angular momentum J = J3 + J̃3. The string ground

state with E− J = 0 corresponds to a lightlike trajectory that moves along φ with φ− t =

constant and sits at θ = π/2 . and at the center of AdS3, ρ = 0. Now to obtain the

string configuration that corresponds to a solution carrying momentum p with the least

amount of energy ǫ = E − J we follow [10]. We first choose the point ψ = 0 on the circle

S1 parameterized by ψ. This point along with θ and φ form a S2. After we include time,

the motion takes place in R × S2 where R is parameterized by the time coordinate. We
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now write the Nambu-Goto action for the string in this background by choosing the world

sheet coordinates to be:

t = τ, φ− t = σ, (4.5)

and we consider a configuration where θ is independent of τ . The Nambu-Goto action

takes the form:

S =
1

2πα′

∫

dτdσ
√

−detγ, (4.6)

where γ is the induced metric on the world sheet given by

γab = gµν
∂Xµ

∂σa

∂Xν

∂σb
, (4.7)

where a, b = 0, 1 and σ0 = τ and σ1 = σ. After taking into account the worldsheet

parameterization given in (4.5) we get the following action,

S =
R2

2πα′

∫

dτdσ
√

cos2 θθ′2 + sin2 θ, (4.8)

here θ′ refers to derivative with respect to σ. Following [10] we integrate the equations of

motion and get

sin θ =
sin θ0
cos σ

, −
(π

2
− θ0

)

≤ σ ≤ π

2
− θ0, (4.9)

where 0 ≤ θ0 ≤ π
2 is an integration constant. The difference in angle between the two

endpoints of the string at a given time δσ = 2
(

π
2 − θ0

)

is identified with the momentum p

of the magnon [10], we write this as

δφ = 2
(π

2
− θ0

)

= p, (4.10)

and one also obtains the energy E− J which is the Noether charge corresponding to shifts

in σ to obtain

E − J =
R2

πα′
cos θ0 =

R2

πα′
sin

δφ

2
. (4.11)

After we have identified δφ with p, we obtain the following strong coupling result of the

dispersion relation,

E − J =
R2

πα′

∣

∣

∣
sin

p

2

∣

∣

∣
, (4.12)

Note that this dispersion relation agrees with the strong coupling limit of (1.5) if

f(λ̃) → g2
6Q1Q5/π

2 for λ̃ → ∞. We now proceed to demonstrate that these magnons are

supersymmetric.

4.2 Supersymmetry preserved by magnons

There are two crucial ingredients to demonstrate that these magnons are BPS solutions

of type IIB on AdS3 × S3 × T 3. The first one is to demonstrate that in a particular

coordinate system the magnon solution is just a straight stretched string. For this we write

the solution given in (4.9) using the LLM [12] coordinates suitable for AdS3 × S3. The

AdS3 × S3 metric in these coordinates is given by [13]

ds26 = −h2(dt+ Vidx
i)2 + h2(dy2 + δijdx

idyj) + y(eGdΩ2
1 + e−GdΩ̃2

1), (4.13)
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where

h−2 = 2y coshG, z ≡ 1

2
tanhG, dV = −1

y
∗3 dz. (4.14)

and z satisfies the following equations

(

∂2
i + y∂y

1

y
∂y

)

z = 0, (4.15)

∂iz∂iz + ∂yz∂yz =
(1 − 4z2)2

4y2
.

For the AdS3 × S3 metric z is such that in the plane y = 0, z = 1/2 is a circular region of

radius R. The above metric is a fibration of the time direction t and the two S1’s denoted

by Ω1 and Ω̃1 over the three dimensional space characterized by x1, x2, y. We can obtain

the conventional global coordinates of AdS3 × S3 given in (4.1) using the following change

of coordinates

y = sinh ρ cos θ, r = cosh ρ sin θ, σ = φ− t, (4.16)

x1 = r cos σ, x2 = r sinσ,

ϕ = Ω1, ψ = Ω̃1.

Using this change of variables, the metric on the plane y = 0 for r < 1 is of the form

ds2 = R2

[

−(1 − r2)

(

dt− r2

1 − r2
dσ

)2

+
dr2 + r2dσ2

1 − r2
+ (1 − r2)dψ2

]

. (4.17)

We now repeat the analysis of [10] for this case. From (4.16) we see that

r2 = sin2 θ = x2
1 + x2

2, since ρ = 0, the solution (4.9) can be written as

r cos σ = x1 = cos θ0 = constant. (4.18)

Thus the magnon solution is just a straight stretched string in these coordinates. The

string is stretched between two points on a circle. Note that the energy E − J of the

magnon is just the length of the string with flat metric on (x1, x2) plane,

E − J =
R2

α′π
∆x2 =

R2

α′π
cos θ0. (4.19)

Finally in these coordinates the angle subtended by the string at the centre of the circle

is related to p by 2θ0 = π − p from (4.10)

The second ingredient needed to show that the giant magnon solution preserves super-

symmetry is to demonstrate the it carries the appropriate central charges. These central

charges arise due to the fact that it is just a straight stretched string in the LLM like coor-

dinates and thus it has the appropriate winding charge needed to make it supersymmetric.

This is the same reason that stretched strings in flat space are BPS. To show that that the

giant magnon solution carries these charges we again follow the logic outlined in [10]. We

first need to find out the Killing spinors for the AdS3×S3 solution in LLM like coordinates.
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We start with the LLM like ansatz for type IIB with S1×S1 isometry, this ansatz accommo-

dates AdS3×S3×T 4 as a solution [13]. In the near horizon geometry of the D1-D5 system

the Ramond-Ramond 3-form is self dual, therefore we take D = 10, IIB supergravity with

the following bosonic fields turned on: the metric GMN , the 2-form potential C+
MN with

self dual field strength i.e F(3) = ∗F(3) where F3 = dC+
(2). Let ψM be the gravitino which is

a right handed Weyl spinor i.e it obeys the condition Γ11ψM = ψM , λ is the dilatino which

is also a right handed Weyl spinor. Notice that we have set the Ramond-Ramond 4-form

potential and axion-dilaton to zero. We specify a reduction of the form:

ds210 = gµνdx
µdxν + eH(x)+G(x)dφ2 + eH(x)−G(x)dφ̃2 + dxsdx

s,

F(3) = −1

2
F(2) ∧ dφ− 1

2
F̃(2) ∧ dφ̃, (4.20)

where

F(2) = Fµνdx
µ ∧ dxν , (4.21)

s = 6, 7, 8, 9 the directions along T 4 and µ = 0, 1, 2, 3. The above ansatz preserves the

SO(2) × SO(2) isometry. This ansatz corresponds to setting the gauge fields from the

components of the metric and the 2-form potential : gµφ and Cµφ̃ and the scalars: C+
φφ̃

and

gφφ̃ components) to zero. This is an inconsistent truncation of the theory but as argued

in [13], this inconsistency manifests itself in one additional constraint given in the second

line of (4.15). Since we have set the axion-dilaton to a constant and the Ramond-Ramond

4-form potential to zero, the supersymmetry variation of dilatino and gravitino takes the

following form [13, 23].

δψM = ∇Mε−
1

96
(ΓMΓNPQ + 2ΓNPQΓM )FNPQε

∗,

δλ = − i

24
FMNP ΓMNP ε. (4.22)

We use the convention that 10d gamma matrices are purely imaginary, explictly they are

given in (A.1). Setting the dilatino variation to zero gives the 6d chirality condition on

the spinor

Γ0Γ1Γ2Γ3Γ4Γ5ǫ = −ǫ. (4.23)

Since the spinor ǫ is a 10 Weyl spinor we also have the following condition

Γ6Γ7Γ8Γ9ǫ = −ǫ. (4.24)

The gravitino variation in the 0, 1, 2, 3, φ, φ̃ directions are given by

δψµ = ∇µǫ−
1

16
γρσF

ρσe−
1

2
(H−G)γµε̃σ̂1ǫ

∗,

δΩH =
1

2
(∂µHγ

µε̃σ̂1)ǫ+ e
H+G

2 ∂φǫ− ie−
H−G

2 γ5∂φ̃ǫ, (4.25)

δΩG =
1

2
(∂µGγ

µε̃σ̂1)ǫ+ e−
H+G

2 ∂φǫ+ ie−
H−G

2 γ5∂φ̃ǫ−
1

8
γρσF

ρσǫ∗.

Here δΩH and δΩG are defined as

δΩH = δψφ − eGΓ5Γ4δψφ̃, δΩG = δψφ + eGΓ5Γ4δψφ̃. (4.26)
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Note that these gravitino variations are different from that obtained by [13] for the case

of 6d (1, 0) gravity. Due to the the occurrence of ǫ∗ on the r.h.s. of the variations the

solutions of the Killing spinors obtained by [13] for the case of 6d (1, 0) gravity cannot be

directly embedded in IIB gravity. But as shown in appendix A. for the following spinor

ǫ̃ = ǫR + i(1 ⊗ ε̃⊗ σ̂1)ǫR. (4.27)

the gravitino variations reduce to that obtained by [13]. In (4.27) subscripts stand for the

real part of the spinor ǫ. Rewriting the gravitino variation (4.25) in terms of the spinor ǫ̃

from, we get the following equations

δψ̃µ = ∇µǫ̃−
i

16
e−

1

2
(H−G)γρσF

ρσγµǫ̃ (4.28)

δΩ̃H = −i1
2
∂µHγ

µǫ̃+ e−
H+G

2 ∂φǫ̃− ie−
H−G

2 γ5∂φ̃ǫ̃

δΩ̃G = −i1
2
∂µGγ

µǫ̃+ e−
H+G

2 ∂φǫ̃+ ie−
H+G

2 γ5∂φ̃ǫ̃−
1

8
γρσF

ρσ ǫ̃.

We now can take the Kaluza-Klein ansatz for the spinor ǫ̃

ǫ̃(x, φ, φ̃) = exp

(

− i

2
(ηφ+ η̃φ̃)

)

ǫ̃(x). (4.29)

Substituting this ansatz in the equations (4.28) we obtain

δψ̃µ = ∇µǫ̃−
i

16
e−

1

2
(H−G)γρσF

ρσγµǫ̃ (4.30)

iδΩ̃H = ∂µHγ
µǫ̃+ e−

H+G
2 ηǫ̃− ie−

H−G
2 γ5η̃ǫ̃

iδΩ̃G = ∂µGγ
µǫ̃+ e−

H+G
2 ηǫ̃+ ie−

H+G
2 γ5η̃ǫ̃− i

4
γρσF

ρσ ǫ̃.

These equations are now identical to the gravitino variation obtained by [13] for the case of

6d (1, 0) gravity. As a by product we have obtained the procedure to embed all the solutions

obtained by [13] for 6d (1, 0) gravity in type IIB gravity. In appendix A.1. we have explicitly

written down two Killing spinors in AdS3 × S4 × T 4 in LLM coordinates referred to by

ǫ1 =
1

2
(ǫ̃+ ǫ̃∗), ǫ2 =

i

2
(ǫ̃′ + ǫ̃′∗), (4.31)

where ǫ̃ and ǫ̃′ are given in (A.44) and (A.45) respectively.

From the study of the supersymmetry algebra of type IIB gravity in [23] it is seen that

the action of anti-commutator of two supersymmetries contains a gauge transformation on

the Neveu-Schwarz B-field. This implies that under the presence of stretched strings the

anti-commutator of the supercharges contains a term proportional to the winding charge

of the stretched strings. We write this as

Q =

∫

d9x
√−gjM0ωM , (4.32)

where the winding current jMN is given by

jMN (x) =
R2

2πα′

∫

M
dτdσ(∂τX

M∂σX
N − ∂τX

N∂σX
M )

δ10(x−X(σ))√−g . (4.33)
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and ωM is the resulting gauge transformation parameter from the anti-commutator of two

supersymmetries. Note that the winding charge (4.32) is conserved only if ωM is a closed 1-

form since ∇M(jMNωM) = ∇Mj
MNωN +jMN∇MωN = 0 only if ∇MωN −∇NωM vanishes.

Thus what remains to be done is to determine the relevant gauge transformation parameter

which results from the action of the anti-commutator of two supersymmetries and show

that that it is a closed form. From the analysis done in appendix A. and appendix B. the

relevant gauge transformation parameter is given by ωµ = i(ǭ1γµǫ2) where ǫ1 and ǫ2 are

given in (4.31). In appendix B. we have explicitly evaluated ωµ and we see that it is a

constant closed 1-from. The only non zero components of of ωµ is given by

ω1 = cosχ, ω2 = sinχ, (4.34)

where χ is the angle corresponding to the rotation degree of freedom in the (1, 2) plane.

Since there is a freedom of choosing the angle χ the winding charge of a straight string in the

x1, x2 plane along any direction is conserved and appears on the r.h.s. of the supersymmetric

algebra. All one has to do is to choose χ so that the 1-form (ω1, ω2) is along the direction

of the string. The magnitude of the winding charge along with its direction in the (1, 2)

plane has 2 independent components, the straight stretched string carries two additional

central charges. For the giant magnon solution given in (4.18) the winding charge using

the definition in (4.32), (4.33) is given by

Q̂ =
R2

πα′
cos θ0x̂2, (4.35)

the x̂2 denotes the direction of the winding. Thus subalgebra relevant for the giant

magnons, SU(1|1)×SU(1|1) is therefore extended by two additional central charges. From

the discussion of the extended algebra in section 3, we see that the extended charges also

form a vector given by C3 + iC4. We now identify the central charges as

Q̂

2
= (C3 + iC4). (4.36)

The proportionality constant is fixed by the fact that the dispersion relation obtained from

the BPS condition (3.10) is consistent with the strong coupling dispersion relation obtained

in (4.12). Since the magnons are straight stretched strings and carry the appropriate

winding charges they are BPS. Therefore we can apply the BPS relation (3.10) to derive

the dispersion relation. For a single magnon this gives

∆ − J = (C1 + C2) =

√

1 +

(

R2

α′π

)2

cos2 θ0, (4.37)

=

√

1 +

(

R2

α′π

)2

sin2 p

2
.

In the second line we have used the identification given in (4.10) of θ0 with the magnon

momentum. Substituting the value of R2 in terms of the D1, D5-brane charges we obtain

∆ − J =

√

1 +

(

g2
6Q1Q5

π2

)

sin2 p

2
. (4.38)
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Thus we see that at strong coupling

f(λ̃) =
g2
6Q1Q5

π2
, λ̃≫ 1. (4.39)

5. Discussion

In this paper we have used the centrally extended SU(1|1)×SU(1|1) superalgebra with two

more additional central charges to derive the dispersion relation of magnons in the D1-D5

system. The derivation closely followed the derivation of the dispersion relation of magnons

in N = 4 Yang-Mills. This similarity suggests that just as N = 4 Yang-Mills is integrable

at the planar limit, the D1-D5 system might be integrable for Q1Q5 ≫ 1. In fact the

classical string on AdS3 ×S3 with Ramond-Ramond flux through the S3 is known to have

infinite set of non-local, commuting conserved charges [24]. Thus using integrability along

with the extended symmetry we have found in this paper and proceeding algebraically

along the lines of [22] it might be possible to obtain the S-matrix of this theory which

will lead to the information about the complete spectrum in the large J limit. Another

approach is to look at the S-matrix of magnons in the strong coupling limit. As we have

seen at strong coupling the giant magnon solution in the D1-D5 system is identical to that

of N = 4 Yang-Mills. Since the evaluation of the S-matrix for scattering of two magnons

with momentum p1 and p2 at strong coupling just depends on the classical solution, the

S-matrix evaluated by [10] applies for magnons in AdS3 × S3 as well. This is given by

S(p1, p2) = exp(iδ), (5.1)

where δ = −
√
λ

π

(

cos
p1

2
− cos

p2

2

)

log

(

sin2 p1−p2

2

sin2 p1+p2

2

)

where sign(sin p1

2 ) > 0 and sign(sin p1

2 ) > 0 and λ = g2
6Q1Q5. It will be interesting to

perform the sub-leading corrections to this S-matrix for the AdS3 ×S3 case following [25],

since these depend on small fluctuations around the giant magnon background. Here the

fact that we are in the AdS3 × S3 × T 4 background will play a role. The sub-leading

corrections to this S-matrix and the use of the extended symmetries we have found in this

work might help to determine the complete S-matrix.

Finally, we have studied the extended supersymmetry of the giant magnons following

the approach of [10]. It will be interesting to study this issue using the more direct world

sheet approach of [26].
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A. Embedding (1, 0) 6d supergravity in IIB supergravity

In this section we embed the solutions of (1, 0) 6d supergravity found in [13] in type IIB

supergravity. The strategy we follow is to rewrite the type IIB supersymmetry variations

in terms of supersymmetry variations of (1, 0) 6d supergravity given in [13]. This allows

us to easily solve for the Killing spinors for AdS3 × S3 in the LLM coordinates. We first

choose the following convention of 10d gamma matrices.

Γµ = −iγµ ⊗ ε⊗ 1 ⊗ σ̂3, (A.1)

Γ4 = i1 ⊗ ε⊗ ε̃⊗ ε̂,

Γ5 = i1 ⊗ 1 ⊗ σ̃1 ⊗ ε̂,

Γ6 = i1 ⊗ 1 ⊗ σ̃3 ⊗ ε̂,

Γ7 = i1 ⊗ σ1 ⊗ ε̃⊗ 1,

Γ8 = i1 ⊗ σ3 ⊗ ε̃⊗ 1,

Γ9 = i1 ⊗ ε⊗ 1 ⊗ σ̂1.

Here γµ with µ = 0, 1, 2, 3 are 4 × 4 gamma matrices in the Majorana representation, we

write them down explictly below.

γ0 = −iσ2 ⊗ 1, γ1 = σ1 ⊗ 1, (A.2)

γ2 = σ3 ⊗ σ1, γ3 = σ3 ⊗ σ3.

In (A.1) ε refers to the following 2 × 2 matrix

ε =

(

0 −1

1 0

)

. (A.3)

The ,̃̂ in (A.1) is used to keep track of which 2-component spinor the 2 × 2 matrices act.

Thus we have the following anti-commutation relations

{

ΓM ,ΓN
}

= ηMN , {γµ, γν} = ηµν . (A.4)

Note that all the 10 gamma matrices are purely imaginary. We now examine the super-

symmetry variations (4.22) with this gamma matrix conventions. Substituting the anstaz

in (4.20) in the supersymmetry variations and setting the dilatino variation to zero gives

FMNP ΓMNP ǫ = 0, expanding this out we obtain

FMNP ΓMNP =
3!

2!

(

ΓµνΓφF
µνφ + ΓµνΓφ̃F

µνφ̃
)

, (A.5)

= 3

[

−1

2
e

1

2
(H+G)γµνΓ4F

µνe−(H+G) − 1

2
e

1

2
(H−G)γµνΓ5F̃

µνe−(H−G)

]

,

= −3

2

[

γµνΓ4F
µν − iγµνγ5FµνΓ5

]

e−
1

2
(H+G),

= −3

2
γµνF

µνΓ4

(

1 + Γ0Γ1Γ2Γ3Γ4Γ5
)

e−
1

2
(H+G).
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In the above manipulations we have used the fact that the 3-form field strength is self-dual

in 6-dimensions and

γ5 = iΓ0Γ1Γ2Γ3, ǫµνρσγρσ = −2iγµνγ5. (A.6)

Thus to set the dilatino variation to zero we need the following condition on the 6d chirality

condition on the spinor

Γ0Γ1Γ2Γ3Γ4Γ5ǫ = −ǫ. (A.7)

Since the spinor ǫ is a 10 Weyl spinor we also have the following condition

Γ6Γ7Γ8Γ9ǫ = −ǫ. (A.8)

We now look at the gravitino variation in the 4 directions and obtain

δψµ = ∇µǫ+
1

48

3

2
γρσF

ρσe−
1

2
(H+G)Γ4

(

1 + Γ0Γ1Γ2Γ3Γ4Γ5
)

Γµǫ
∗, (A.9)

= ∇µǫ+
1

16
γρσF

ρσe−
1

2
(H+G)Γ4Γµǫ

∗,

= ∇µǫ−
1

16
γρσF

ρσe−
1

2
(H+G)γµε̃σ̂1ǫ

∗.

Note that the coefficients occurring in this equation are real due to our convention of the 10d

gamma matrices. Let us now look at the remaining components of the gravitino variation

δψφ = ∇φǫ−
1

16
γρσF

ρσǫ∗, (A.10)

= ∂φǫ−
1

4
∂µ(H +G)e

H+G
2 Γ4Γµǫ−

1

16
γρσF

ρσǫ∗.

Similarly the last component of the gravitino variation becomes

δψφ̃ = ∇φ̃ǫ−
1

16
γρσF

ρσΓ4Γ5e
−Gǫ∗, (A.11)

= ∂φ̃ǫ−
1

4
∂µ(H −G)e

H−G
2 Γ5Γµǫ−

1

16
γρσF

ρσe−GΓ4Γ5ǫ
∗.

Let us define the following linear combinations

δΩH = δψφ − eGΓ5Γ4δψφ̃, (A.12)

δΩG = δψφ + eGΓ5Γ4δψφ̃.

we obtain the equations

δΩH = −1

2
∂µHΓ4Γ

µǫ+ e−
H+G

2 ∂φǫ− e−
H−G

2 Γ5Γ4∂φ̃ǫ, (A.13)

δΩG = −1

2
∂µGΓ4Γ

µ + e−
H+G

2 ∂φǫ+ e−
H−G

2 Γ5Γ4∂φ̃ǫ−
1

8
γρσF

ρσǫ∗.

We now use the chirality condition (A.7) and the representation of the 10d gamma

matrices in (A.1) to write the above equations as

δΩH =
1

2
∂µHγ

µε̃σ̂1ǫ+ e−
H+G

2 ∂φǫ− ie−
H−G

2 γ5∂φ̃ǫ, (A.14)

δΩG =
1

2
∂µGγ

µε̃σ̂1ǫ+ e−
H+G

2 ∂φǫ+ ie−
H−G

2 γ5∂φ̃ǫ−
1

8
γρσF

ρσǫ∗.
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Note that the coefficients of the above equations are also real, therefore we take the

real parts of the equations in (A.10) and (A.14). This removes the complex conjugate

operation on the spinor. We then consider the following spinor

ǫ̃ = ǫR + i(1 ⊗ ε̃⊗ σ̂1)ǫR. (A.15)

Here the subscripts stand for the real part of the spinor ǫ, note that the 1 refers to the

8 × 8 identity matrix. The above form of ǫ̃ is in fact a reality condition on ǫ̃, note that

the reality condition does not involve the 4-d spinor. Thus the 4-d spinor is in general

complex. The reality condition explicitly is given by

ǫ̃+ ǫ̃∗ = i(1 ⊗ ε̃⊗ σ̂1)(ǫ̃− ǫ̃∗). (A.16)

The 6 dimensional chirality condition in (A.7) on ǫ̃ reduces to the following

Γ0Γ1Γ2Γ3Γ4Γ5ǫ̃ = −ǫ̃∗, (A.17)

while the chirality condition on the T 4 (A.8) directions remains

Γ6Γ7Γ8Γ9ǫ̃ = −ǫ̃. (A.18)

We now write down the susy variation equation for ǫ̃ from the equations (A.10) and (A.14),

we get the following equations

δψ̃µ = ∇µǫ̃+
i

16
γρσF

ρσγµǫ̃, (A.19)

δΩ̃H = −i1
2
∂µHγ

µǫ̃+ e−
H+G

2 ∂φǫ̃− ie−
H−G

2 γ5∂φ̃ǫ̃,

δΩ̃G = −i1
2
∂µGγ

µǫ̃+ e−
H+G

2 ∂φǫ̃+ ie−
H+G

2 γ5∂φ̃ǫ̃−
1

8
γρσF

ρσ ǫ̃.

We now can take the Kaluza-Klein anstaz for the spinor ǫ̃

ǫ̃(x, φ, φ̃) = exp

[

− i

2
(ηφ+ η̃φ̃)

]

ǫ̃(x) (A.20)

Substituting this ansatz in the equations (A.19) we obtain

δψ̃µ = ∇µǫ̃+
i

16
γρσF

ρσγµǫ̃, (A.21)

iδΩ̃H = ∂µHγ
µǫ̃+ e−

H+G
2 ηǫ̃− ie−

H−G
2 γ5η̃ǫ̃,

iδΩ̃G = ∂µGγ
µǫ̃+ e−

H+G
2 ηǫ̃+ ie−

H+G
2 γ5η̃ǫ̃− i

4
γρσF

ρσ ǫ̃.

The above supersymmetry variations are identical to that obtained in [13] for the case

of (1, 0) 6d supergravity. Therefore we can use the methods discussed in [13] to find

the Killing spinors. These equations determine the 4 dimensional component of the

10 dimensonal Killing spinor. The remaining components are determined by the the

conditions (A.16), (A.17) and (A.18).
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A.1 Killing spinors in LLM coordinates

We will now find the Killing spinors for AdS3×S3 in LLM coordinates. In these coordinates

the solution is given by [13]

ds26 = −h2(dt + Vidx
i)2 + h2(dy2 + δijdx

idyj) + y(eGdΩ2
1 + e−GdΩ̃2

1), (A.22)

F(2) = −2
[

d
(

yeG
)

∧ (dt+ V ) + h2eG ∗3 d
(

ye−G
)]

. (A.23)

where

h−2 = 2y coshG, z ≡ 1

2
tanhG, dV = −1

y
∗3 dz. (A.24)

and z satisfies the following equations

(

∂2
i + y∂y

1

y
∂y

)

z = 0, (A.25)

∂iz∂iz + ∂yz∂yz =
(1 − 4z2)2

4y2
.

Let us first obtain the 4 dimensional part of the Killing spinor, we will then use the

conditions (A.16), (A.17) and (A.18) to obtain the full 10 dimensional Killing spinor.

There are two choices for the Killing spinor of the above solution: η = 1, η̃ = −1, or η =

−1, η̃ = +1 [13]. We now solve for the Killing spinor which has the condition η = 1, η̃ = −1.

Substituting the solution given in (A.22) into the the Killing spinor equation δΩ̃H = 0 of

(A.21) we obtain
(
√

1 + e2Gγ3 + iγ5eG + 1
)

ǫ̃ = 0. (A.26)

Note that the above operator is a projector. To solve for the Killing spinor we first choose

the following ansatz

ǫ̃ = exp(iδγ5γ3)ǫ̃1, γ3ǫ̃1 = −ǫ̃1. (A.27)

Substituting the above ansatz in the Killing spinor equation given in (A.26) we obtain

(
√

1 + e2Gγ3 + iγ5eG + 1
)

(

cosh δ + i sinh δγ5γ3
)

ǫ̃1 = 0. (A.28)

Expanding the above equation and equating the real and imaginary parts we obtain the

following

tanh δ =

√
1 + e2G − 1

eG
, tanh δ =

eG√
1 + e2G + 1

. (A.29)

From these equations we obtain that

sinh 2δ = expG. (A.30)

We now fix the normalization of the spinor ǫ̃1: Consider the following spinor bilinears

Kµ = ¯̃ǫγµǫ̃, Lµ = ¯̃ǫγµγ5ǫ̃. (A.31)
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Let ǫ̃1 = αǫ̃0 where ǫ̃†0ǫ̃0 = 1. In the coordinate system of the metric in (A.22) we have

Kt = 1, Ly = 1, therefore we have the conditions

Kt = h¯̃ǫγ0ǫ̃ = 1, Ly = h¯̃ǫγ3γ5ǫ̃ = −1. (A.32)

We impose this normalization by first requiring the projector

γ0γ
3γ5ǫ̃ = ǫ̃. (A.33)

Now from the construction of ǫ̃ in (A.27) we see that the above condition implies that

γ0γ
5ǫ̃1 = −ǫ̃1. (A.34)

To fix the normalization constant α we evaluate the following scalar constructed out of

spinor bilinears

f2 = i¯̃ǫǫ̃. (A.35)

Substituting the form of the Killing spinor we obtain

f2 = iǫ̃1 exp(−iδγ3γ5)γ
0 exp(iγ5γ

3)ǫ̃1, (A.36)

= α2 sinh 2δ = α2 exp(G).

From [13] we have f2 = exp[(H+G)/2], therefore we obtain the value of the normalization

constant α as

α = exp

(

H −G

4

)

. (A.37)

Similar manipulations show that this normalization is consistent with Kt = 1 and Ly = 1

in these cases one obtains the equation

h cosh(2δ)α2 = 1. (A.38)

The above equation can be easily shown to be true using the solution in (A.22). As part of

the consistency requirement it can be shown using simple gamma matrix manipulations that

the other components of the vectors Kµ and Lµ vanish. Thus the Killing spinor is given by

ǫ̃ = exp

(

H −G

2

)

exp(iδγ5γ
3)ǫ̃0, (A.39)

γ3ǫ̃0 = −ǫ̃0, γ0γ
5ǫ̃0 = −ǫ̃0,

or more explicitly the four component spinor is given by

ǫ̃4 = e−
i
2
(φ−φ̃)e(

H−G
2

)(cosh δ − iγ5 sinh δ)ǫ̃0, (A.40)

ǫ̃0 =
1√
2











0

1

i

0











.
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It can be verified that the spinor in (A.40) also satisfies the first equation in (A.21). Note

that there is a degree of freedom in choosing ǫ̃0 which corresponds to rotations in the

(1, 2)-plane. The constraints determining ǫ̃0 commutes with the rotation matrix γ1γ2,

therfore we can also consider the following

ǫ̃0 → exp(χγ1γ2)ǫ̃0. (A.41)

In (A.40) we have reinstated the dependence on the coordinates φ, φ̃ and set the arbitrary

constant phase in ǫ̃0 to be zero. Performing the same analysis with η = −1, η̃ = 1 we

obtain the following four component Killing spinor

ǫ̃′4 = e
i
2
(φ−φ̃)e(

H−G
2

)(cosh δ − iγ5 sinh δ)ǫ̃′0, (A.42)

ǫ̃′0 =
1√
2











1

0

0

i











.

Note that for this case compared to the case with η = 1, η̃ = −1 we have δ → −δ and

γ3ǫ′0 = ǫ′0 and γ0γ
5ǫ′0 = −ǫ′0, since Ly is now normalized to 1. There is again degree of

freedom which corresponds to rotations in the (1, 2) plane given by

ǫ̃′0 → exp(χγ1γ2)ǫ̃
′
0. (A.43)

With these ingredients the full 10 dimensional 32 component Killing spinor which satisfies

the conditions (A.16), (A.17) and (A.18) is given by

ǫ̃ =
1√
2

(

ǫ̃′4
ǫ̃4

)

⊗
[(

1

0

)

⊗
(

0

1

)

+

(

0

i

)

⊗
(

1

0

)]

. (A.44)

The 6 dimensional chirality condition (A.17) is satisfied due to the property ǫ̃∗4 = iγ5ǫ̃′4.

Furthermore the rotation degree of freedom in the (1, 2) plane (A.41) and (A.43) has to

be such that both ǫ̃0 and ǫ̃′0 has to be rotated by the same angle χ.

Instead of working with the real part of the 10d spinor in (A.14) we can also work with

the its imaginary part and construct the complex spinor ǫ̃ = ǫI + iε̃σ̂1ǫI . Then one obtains

the same set of equations as given in (A.21) with F replaced by −F . Going through the

same procedure of solving for the complex spinor ǫ̃ we obtain the following Killing spinor

ǫ̃′ =
1√
2

(

ǫ̃′∗4
ǫ̃∗4

)

⊗
[(

1

0

)

⊗
(

0

1

)

+

(

0

i

)

⊗
(

1

0

)]

. (A.45)

Note that the 4 component part of the full spinor for this case has is complex conjugate

compared the solution in (A.44). This the because on replacing F → −F in (A.21), ǫ∗4
and ǫ′∗4 are solutions. The remaining components of the 32 dimensional spinor remains

the same since the construction of ǫ̃ for this situation is same as the situation when one

works only with the real part of ǫ. It is easy to verify that the spinor in (A.45) satisfies all

the conditions given in (A.16), (A.17) and (A.18). Thus we have constructed two Killing

spinors (A.44) and (A.45) for AdS3 × S3 × T 4.
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B. Gauge transformation

We now proceed to obtain the relevant gauge transformation parameter for the Neveu-

Schwarz B-field appearing in the right hand side of the supersymmetry algebra. The

relevant parameter is given in equation (2.34) of [23] which is given by

Λα
µ = Aα

µρξ
ρ − 2i(V α

+ ǭ1Γµǫ
∗
2 + V α

− ǭ1
∗Γµǫ2), (B.1)

where ǫ1, ǫ2 are any two Killing spinors and Λ1
µ = Λ2∗

µ and A1
µρ = A2∗

µρ. The Neveu-

Schwarz and the Ramond-Ramond 2-form are the real and imaginary components of Aα
µρ.

Here we have converted the gamma matrices used in [23] to our convention by setting

(ΓM )Schwarz = ΓMΓ11. V α
± are related to the axion dilaton background. For constant

dilaton backgrounds6 one has

V 1
− = V 2

+, and V 1
+ = V 2∗

+ . (B.2)

which are all constants. We now substitute the two Killing spinor solutions (A.44)

and (A.45) into the expression for the gauge transformation (B.1). For these solutions

the 32-component 10 dimension Killing spinor ǫ is related to ǫ̃ by

ǫ1 =
1

2
(ǫ̃+ ǫ̃∗) , ǫ2 =

i

2

(

ǫ̃′ + ǫ̃′∗
)

. (B.3)

Since ǫ1 is purely real and ǫ2 is purely imaginary, the spinor bilinear ǭ1Γµǫ
∗
2 is purely

imaginary. From (B.1) and the conditions (B.2) it is easy to see that the contribution to the

real part of the gauge transformation parameter Λα
µ from the spinor bilinear is proportional

to iǭ1Γµǫ2 while the contribution to the imaginary part is given by ǭ1Γµǫ2. Thus the gauge

transformation parameter relevant for the Neveu-Schwarz B-field is given by iǭ1Γµǫ2.

We now evaluate the spinor bilinear relevant for the gauge transformation parameter

and show that it is a constant. We have

i(ǭ1Γµǫ2) = Re
(

ǫ̃T4 γ0γµǫ̃4 + ǫ̃′T4 γ0γµǫ̃
′
4

)

. (B.4)

Here we have used (B.3) and substituted the solutions for ǫ and ǫ′ given in (A.44)

and (A.45). Let us first evaluate Re(ǫ̃T4 γ0γµǫ̃4) at say φ = 0, φ̃ = 0.7 Using the the

expression given in (A.40) we find:

ǫ̃T4 γ0γ0ǫ̃4 = ǫ̃T4 γ0γ3ǫ̃4 = 0,

ǫ̃T4 γ0γiǫ̃4 = eîiǫ̃
T
4 γ0γîǫ̃4,

= eîi exp

(

H −G

2

)

ǫ̃T0 γ0γî(cosh 2δ + i sinh 2δγ5γ3)ǫ̃0. (B.5)

But using the solution in (A.40) one can show that ǫ̃T0 γ0γîγ
5γ3ǫ̃0 = 0. We also have

ǫ̃T0 γ0γ1̂ǫ̃0 = 1, ǫ̃T0 γ0γ2̂ǫ̃0 = i. (B.6)

6The near horizon-geometry of the D1-D5 system has a constant dilaton background.
7The giant magnon is located at a definite point along these directions.
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Therefore

Re(ǫ̃T4 γ0γ1̂ǫ̃4) = exp

(

H −G

2

)

cosh 2δ = h−1,

Re(ǫ̃T4 γ0γ2̂ǫ̃4) = 0. (B.7)

We then have

Re(ǫ̃T4 γ0γ1ǫ̃4) = e1̂1Re(ǫ̃T4 γ0γ1̂ǫ̃4),

= h× h−1 = 1.

Re(ǫ̃T4 γ0γ2ǫ̃4) = e2̂2Re(ǫ̃T4 γ0γ0γ2̂ǫ̃4),

= 0. (B.8)

A similar calculation yields

Re(ǫ̃′T4 γ0γ1ǫ̃
′
4) = 1, Re(ǫ̃′T4 γ0γ2ǫ̃

′
4) = 0. (B.9)

All the remaining components of the above bilinear vanish. Combining (B.8) and (B.9) the

relevant gauge parameter is given by

− iRe(ǫT1 γ0γ1ǫ2) = 1, −iRe(ǫT1 γ0γ2ǫ2) = 0. (B.10)

But since we have the freedom of rotation of the solution in the (1, 2) given by (A.41)

and (A.43) we can rotate the above gauge parameter to point along any direction in the

(1, 2) plane. We refer to the gauge parameter as ωµ and the non-vanishing components

are given by

ω1 = cosχ, ω2 = sinχ. (B.11)

where χ is a constant.
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